欢迎光临
我们一直在努力

2023年安徽省初中毕业学业考试模拟仿真试卷(四)数学试卷 答案(更新中)

2023年安徽省初中毕业学业考试模拟仿真试卷(四)数学试卷答案,我们目前收集并整理关于2023年安徽省初中毕业学业考试模拟仿真试卷(四)数学得系列试题及其答案,更多试题答案请关注我们

试题答案

2023年安徽省初中毕业学业考试模拟仿真试卷(四)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

9.已知定义域为R的函数$f(x)=\frac{{-{2^x}-b}}{{{2^{x+1}}+2}}$是奇函数.
(Ⅰ)求实数b的值;
(Ⅱ)判断并证明函数f(x)的单调性;
(Ⅲ)若关于x的方程f(x)=m在x∈[0,1]上有解,求实数m的取值范围.

分析(1)根据正弦函数的性质,当x+$\frac{π}{4}$=2kπ+$\frac{π}{2}$时,k∈Z时,f(x)有最大值,当x+$\frac{π}{4}$=2kπ-$\frac{π}{2}$时,k∈Z时,f(x)有最小值.
(2)由x∈[0,π],可得,-$\frac{\sqrt{2}}{2}$≤sin(x+$\frac{π}{4}$)≤1,显然a≠0,分①当a>0时和②当a<0时两种情况,分别根据f(x)的值域,求得a、b的值.

解答解:(1)当a=1时,f(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$)+b+1,
当x+$\frac{π}{4}$=2kπ+$\frac{π}{2}$时,即x=2kπ+$\frac{π}{4}$,k∈Z时,f(x)有最大值,此时{x|x=2kπ+$\frac{π}{4}$,k∈Z},
当x+$\frac{π}{4}$=2kπ-$\frac{π}{2}$时,即x=2kπ-$\frac{3π}{4}$,k∈Z时,f(x)有最小值,此时{x|x=2kπ-$\frac{3π}{4}$,k∈Z};
(2)f(x)=$\sqrt{2}$asin(x+)+a+b,
∵x∈[0,π],∴$\frac{π}{4}$≤x+$\frac{π}{4}$≤$\frac{5π}{4}$,∴-$\frac{\sqrt{2}}{2}$≤sin(x+$\frac{π}{4}$)≤1.
显然a≠0,
①当a>0时,∴-$\frac{\sqrt{2}}{2}$a≤$\sqrt{2}$asin(x+$\frac{π}{4}$)≤$\sqrt{2}$a,
∴b≤f(x)≤($\sqrt{2}$+1)a+b,
而f(x)的值域是[3,4],
∴b=3,($\sqrt{2}$+1)a+b=4,
解得a=$\sqrt{2}$-1,
②当a<0时,$\sqrt{2}$a≤$\sqrt{2}$asin(x+$\frac{π}{4}$)≤-a,$\sqrt{2}$a+a+b≤f(x)≤b,而f(x)的值域是[3,4],
故有,$\sqrt{2}$a+a+b=3,且b=4,解得a=1-$\sqrt{2}$,b=4.
综上可得,a=$\sqrt{2}$-1,b=3或a=1-,b=4.

点评本题主要考查复合三角函数的最值,正弦函数的定义域和值域,属于中档题.

2023年安徽省初中毕业学业考试模拟仿真试卷(四)数学

赞(0)
未经允许不得转载:答案联动网 » 2023年安徽省初中毕业学业考试模拟仿真试卷(四)数学试卷 答案(更新中)
1.444秒内查询了49次数据库