2023普通高校招生全国统一考试·全真冲刺卷(二)数学试卷答案,我们目前收集并整理关于2023普通高校招生全国统一考试·全真冲刺卷(二)数学得系列试题及其答案,更多试题答案请关注我们
2023普通高校招生全国统一考试·全真冲刺卷(二)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
17.化简$\sqrt{1-2sin(π+1)cos(π+1)}$等于( )
A. | sin1-cos1 | B. | cos1-sin1 | C. | ±(sin1-cos1) | D. | sin1+cos1 |
分析(1)由2x+$\frac{π}{6}$=$\frac{π}{2}$+kπ,k∈Z解得函数的对称轴方程;
(2)根据x∈[$\frac{π}{12}$,$\frac{π}{3}$],求出相位角的范围,结合正弦函数的图象和性质,求出函数的最值,可得函数y=2sin(2x+$\frac{π}{6}$),x∈[$\frac{π}{12}$,$\frac{π}{3}$]的值域.
解答解:(1)由2x+$\frac{π}{6}$=$\frac{π}{2}$+kπ,k∈Z得:x=$\frac{π}{6}$+$\frac{1}{2}$kπ,k∈Z,
故函数y=2sin(2x+$\frac{π}{6}$)的对称轴方程为:x=$\frac{π}{6}$+$\frac{1}{2}$kπ,k∈Z,
(2)当x∈[$\frac{π}{12}$,$\frac{π}{3}$]时,2x+$\frac{π}{6}$∈[$\frac{π}{3}$,$\frac{5π}{6}$],
当2x+$\frac{π}{6}$=$\frac{π}{2}$,即x=$\frac{π}{6}$时,函数y=2sin(2x+$\frac{π}{6}$)取最大值2;
当2x+$\frac{π}{6}$=$\frac{5π}{6}$,即x=$\frac{π}{3}$时,函数y=2sin(2x+$\frac{π}{6}$)取最小值1;
故函数y=2sin(2x+$\frac{π}{6}$),x∈[$\frac{π}{12}$,$\frac{π}{3}$]的值域为[1,2]
点评本题考查的知识点是正弦函数的对称性,三角函数的最值,难度中档.
2023普通高校招生全国统一考试·全真冲刺卷(二)数学