2022~2023学年核心突破XGK(二十四)数学试卷答案,我们目前收集并整理关于2022~2023学年核心突破XGK(二十四)数学得系列试题及其答案,更多试题答案请关注我们
2022~2023学年核心突破XGK(二十四)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
5.已知函数f(x)=|2x|,现将y=f(x)的图象向右平移一个单位,再向上平移一个单位得到函数h(x)的图象.
(1)求函数h(x)的解析式;
(2)函数y=h(x)的图象与函数g(x)=kx2的图象在$x∈[{\frac{1}{2},3}]$上至少有一个交点,求实数k的取值范围.
分析先将递推公式两边取倒数,再两边乘以n,再两边减去1,得到1-$\frac{n}{{a}_{n}}$=$\frac{1}{3}$•[1-$\frac{n-1}{{a}_{n-1}}$],即可下结论.
解答证明:∵an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}$,两边取倒数得,
∴$\frac{1}{{a}_{n}}$=$\frac{2{a}_{n-1}+n-1}{3n{a}_{n-1}}$,两边乘以n,并裂项得,
$\frac{n}{{a}_{n}}$=$\frac{2}{3}$+$\frac{1}{3}$•$\frac{n-1}{{a}_{n-1}}$,两边减1得,
$\frac{n}{{a}_{n}}$-1=-$\frac{1}{3}$+$\frac{1}{3}$•$\frac{n-1}{{a}_{n-1}}$=$\frac{1}{3}$($\frac{n-1}{{a}_{n-1}}$-1),
因此,1-$\frac{n}{{a}_{n}}$=$\frac{1}{3}$•[1-$\frac{n-1}{{a}_{n-1}}$],
故数列{1-$\frac{n}{{a}_{n}}$}是以1-$\frac{1}{{a}_{1}}$为首项,以$\frac{1}{3}$为公比的等比数列,
所以,1-$\frac{n}{{a}_{n}}$=(1-$\frac{1}{{a}_{1}}$)•$(\frac{1}{3})^{n-1}$,其中a1=$\frac{3}{2}$,
解得,an=$\frac{n•3^n}{3^n-1}$.
点评本题主要考查了等比关系的确定和数列通项公式的解法,证明中用到了综合法与等比数列定义,属于中档题.
2022~2023学年核心突破XGK(二十四)数学