九师联盟 2022~2023学年高三核心模拟卷(下)五数学试卷答案,我们目前收集并整理关于九师联盟 2022~2023学年高三核心模拟卷(下)五数学得系列试题及其答案,更多试题答案请关注我们
九师联盟 2022~2023学年高三核心模拟卷(下)五数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
17.已知x>0,y>0,且4x+y=1.
(I)求$\frac{1}{x}+\frac{1}{y}$的最小值;
(2)求log2x+log2y的最大值.
分析(Ⅰ)利用数量积公式结合三角函数公式求出A的正弦值;
(Ⅱ)结合余弦定理分别求出c和cosB即可.
解答解:(Ⅰ)由向量$\overrightarrowm=(cos(A-B),sin(A-B))$,$\overrightarrown=(cosB,-sinB)$,且$\overrightarrowm•\overrightarrown=-\frac{3}{5}$.
得到cos(A-B)cosB-sin(A-B)sinB=cosA=-$\frac{3}{5}$,A为三角形内角,所以sinA=$\frac{4}{5}$;
(Ⅱ)$a=4\sqrt{2},b=5$,由余弦定理得到a2=b2+c2-2bccosA,即32=25+c2+6c,解得c=1,
由余弦定理得到cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{\sqrt{2}}{2}$,得$\overrightarrow{AB}•\overrightarrow{BC}$=-c•a•cosB=-4.
点评本题考查了三角形内各边对应的向量的数量积的运算;注意向量的夹角与三角形内角的关系.
九师联盟 2022~2023学年高三核心模拟卷(下)五数学