安徽省2023年中考密卷·先享模拟卷(一)数学试卷答案,我们目前收集并整理关于安徽省2023年中考密卷·先享模拟卷(一)数学得系列试题及其答案,更多试题答案请关注我们
安徽省2023年中考密卷·先享模拟卷(一)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
8.已知集合M={-2,-1,0,1},N={x|$\frac{1}{2}$≤2x≤4},x∈Z},则M∩N=( )
A. | M={-2,-1,0,1,2} | B. | M={-1,0,1,2} | C. | M={-1,0,1} | D. | M={0,1} |
分析设出直线方程代入抛物线方程整理可得k2x2+(4k2+2k-4)x+4k2+4k+1=0(*)直线与抛物线只有一个公共点?(*)只有一个根.
解答解:由题意可设直线方程为:y=k(x+2)+1,
代入抛物线方程整理可得k2x2+(4k2+2k-4)x+4k2+4k+1=0(*)
直线与抛物线只有一个公共点等价于(*)只有一个根
①k=0时,y=1符合题意;
②k≠0时,△=(4k2+2k-4)2-4k2(4k2+4k+1)=0,整理,得2k2+k-1=0,
解得k=$\frac{1}{2}$或k=-1.
满足题意的直线有3条.
故选:C.
点评本题主要考查了由直线与抛物线的位置关系的求解参数的取值范围,一般的思路是把位置关系转化为方程解的问题,体现了转化的思想.
安徽省2023年中考密卷·先享模拟卷(一)数学