安徽省2022-2023学年八年级下学期教学质量调研一1数学试卷答案,我们目前收集并整理关于安徽省2022-2023学年八年级下学期教学质量调研一1数学得系列试题及其答案,更多试题答案请关注我们
安徽省2022-2023学年八年级下学期教学质量调研一1数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
17.命题“?x>0,f(x)<x”的否定形式是( )
A. | ?x>0,f(x)≥x | B. | ?x≤0,f(x)≥x | C. | ?x0>0,f(x0)≥x0 | D. | ?x0≤0,f(x0)≥x0 |
分析由代入法,再由等差数列的定义和通项公式,可得$\sqrt{{a}_{n}}$=$\sqrt{2}$+$\sqrt{2}$(n-1)=$\sqrt{2}$n,即an=2n2.再由数列极限的运算和公式,计算即可得到所求值.
解答解:点($\sqrt{{a}_{n}}$,$\sqrt{{a}_{n-1}}$)在直线y=x-$\sqrt{2}$上,可得
$\sqrt{{a}_{n-1}}$=$\sqrt{{a}_{n}}$-$\sqrt{2}$,即为$\sqrt{{a}_{n}}$-$\sqrt{{a}_{n-1}}$=$\sqrt{2}$,
可得数列{$\sqrt{{a}_{n}}$}为首项为$\sqrt{2}$,公差为$\sqrt{2}$的等差数列,
即有$\sqrt{{a}_{n}}$=$\sqrt{2}$+$\sqrt{2}$(n-1)=$\sqrt{2}$n,即an=2n2.
则$\underset{lim}{n→∞}$$\frac{{a}_{n}}{(n+1)^{2}}$=$\underset{lim}{n→∞}$$\frac{2{n}^{2}}{{n}^{2}+2n+1}$
=$\frac{2}{1+\underset{lim}{n→∞}\frac{2}{n}+\underset{lim}{n→∞}\frac{1}{{n}^{2}}}$=$\frac{2}{1+0+0}$=2.
故答案为:2.
点评本题考查等差数列的定义和通项公式的运用,考查数列极限的求法,注意运用极限公式:$\underset{lim}{n→∞}$$\frac{1}{n}$=$\underset{lim}{n→∞}$$\frac{1}{{n}^{2}}$=0,考查运算能力,属于中档题.
安徽省2022-2023学年八年级下学期教学质量调研一1数学