2023届高三张家界一模数学试卷答案,我们目前收集并整理关于2023届高三张家界一模数学得系列试题及其答案,更多试题答案请关注我们
2023届高三张家界一模数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
15.若一个三棱锥的底面是边长为3的正三角形,高为2$\sqrt{3}$,所有侧棱均相等,则侧棱长为( )
A. | $\sqrt{21}$ | B. | $\sqrt{15}$ | C. | $\sqrt{3}$ | D. | 1 |
分析(1)利用同角三角函数基本关系式、“弦化切”即可得出;
(2)由tanα=3,可得sinαcosα=$\frac{sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{tanα}{ta{n}^{2}α+1}$.又π<α<$\frac{3π}{2}$,可得$\frac{5π}{4}<α<\frac{3π}{2}$,因此cosα-sinα>0,于是cosα-sinα=$\sqrt{(cosα-sinα)^{2}}$=$\sqrt{1-2sinαcosα}$,即可得出.
解答解:(1)∵tanα=3.
∴$\frac{sinα-4cosα}{5sinα+2cosα}$=$\frac{tanα-4}{5tanα+2}$=$\frac{3-4}{5×3+2}$=$-\frac{1}{17}$.
sin2α十2sinαcosα=$\frac{si{n}^{2}α+2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α+2tanα}{ta{n}^{2}α+1}$=$\frac{{3}^{2}+2×3}{{3}^{2}+1}$=$\frac{3}{2}$;
(2)∵tanα=3,∴sinαcosα=$\frac{sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{tanα}{ta{n}^{2}α+1}$=$\frac{3}{10}$.
∵π<α<$\frac{3π}{2}$,∴$\frac{5π}{4}<α<\frac{3π}{2}$,
∴cosα-sinα>0,
∴cosα-sinα=$\sqrt{(cosα-sinα)^{2}}$=$\sqrt{1-2sinαcosα}$=$\sqrt{1-2×\frac{3}{10}}$=$\frac{\sqrt{10}}{5}$.
点评本题考查了同角三角函数基本关系式、“弦化切”方法,考查了推理能力与计算能力,属于中档题.
2023届高三张家界一模数学