安徽省六安市2023届九年级第一学期期末质量监测数学试卷答案,我们目前收集并整理关于安徽省六安市2023届九年级第一学期期末质量监测数学得系列试题及其答案,更多试题答案请关注我们
安徽省六安市2023届九年级第一学期期末质量监测数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
6.已知向量 $\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(0,-1),$\overrightarrow{c}$=($\sqrt{3}$,k),若 $\overrightarrow{a}$-2$\overrightarrow{b}$ 与 $\overrightarrow{c}$ 垂直,则 k=-1.
分析把已知等式两边平方得到$\overrightarrow{a}•\overrightarrow{b}=\frac{1}{4}(λ+\frac{1}{λ})$,利用不等式求得$\overrightarrow{a}•\overrightarrow{b}$的最小值,代入数量积求夹角公式得答案.
解答解:由|λ$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-λ$\overrightarrow{b}$|(λ>0),得
$(λ\overrightarrow{a}+\overrightarrow{b})^{2}=3(\overrightarrow{a}-λ\overrightarrow{b})^{2}$,
即${λ}^{2}|\overrightarrow{a}{|}^{2}+2λ\overrightarrow{a}•\overrightarrow{b}+|\overrightarrow{b}{|}^{2}$=$3|\overrightarrow{a}{|}^{2}-6λ\overrightarrow{a}•\overrightarrow{b}+3{λ}^{2}|\overrightarrow{b}{|}^{2}$.
∵$|\overrightarrow{a}|=|\overrightarrow{b}|=1$,
∴${λ}^{2}+2λ\overrightarrow{a}•\overrightarrow{b}+1=3-6λ\overrightarrow{a}•\overrightarrow{b}+3{λ}^{2}$,
∴$\overrightarrow{a}•\overrightarrow{b}=\frac{1}{4}(λ+\frac{1}{λ})$$≥\frac{1}{4}•2\sqrt{λ•\frac{1}{λ}}=\frac{1}{2}$.
当且仅当λ=1时上式等号成立.
∴cos$<\overrightarrow{a},\overrightarrow{b}>$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{1}{2}$.
则当$\overrightarrow{a}$•$\overrightarrow{b}$最小时$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°.
点评本题考查平面向量的数量积运算,考查了数量积运算的坐标表示,训练了利用基本不等式求最值,是中档题.
安徽省六安市2023届九年级第一学期期末质量监测数学