陕西省榆林市高二年级教学质量过程性评价(2月)数学试卷答案,我们目前收集并整理关于陕西省榆林市高二年级教学质量过程性评价(2月)数学得系列试题及其答案,更多试题答案请关注我们
陕西省榆林市高二年级教学质量过程性评价(2月)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
15.关于函数$f(x)={2^{\frac{|x|}{{{x^2}+1}}}}$,有下列命题:①其图象关于y轴对称;②f(x)在(-∞,0)上是增函数;③f(x)的最大值为1;④对任意a,b,c∈R,f(a),f(b),f(c)都可做为某一三角形的边长.其中正确的序号是①④.
分析由题意可得反射光线所在的直线经过圆心M(-3,2),点P(-2,-3)关于x轴的对称点Q(2,-3)在反射光线所在的直线上,用斜率公式求解即可.
解答解:由题意可得反射光线所在的直线经过圆:(x+3)2+(y-2)2=1的圆心M(-3,2),
由反射定律可得点P(-2,-3)关于y轴的对称点Q(2,-3)在反射光线所在的直线上,
根据M、Q两点的坐标,
所求直线的斜率为:$\frac{2+3}{-3-2}$=-1.
故选:A.
点评本题主要考查用两点式求直线方程,判断反射光线所在的直线经过圆心M(-3,2),是解题的突破口.
陕西省榆林市高二年级教学质量过程性评价(2月)数学