[永州二模]永州市2023年高考第二次适应性考试数学试卷答案,我们目前收集并整理关于[永州二模]永州市2023年高考第二次适应性考试数学得系列试题及其答案,更多试题答案请关注我们
[永州二模]永州市2023年高考第二次适应性考试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
18.随着能源短缺问题日益突出,可再生能源的开发受到高度重视。糖化酶作为生物生产乙醇必需的催化剂,其需求量大幅上升。下图表示高产糖化酶的细菌菌株的育种过程。下列有关叙述错误的是出发菌株X射线处理,挑取200个单细胞菌株初筛选出50株复师选出5株X射线处理理多轮重复筛选A.用X射线处理能提高菌株基因突变的频率B.经过初筛和复筛获得高产菌株是定向选择的过程C.获得的高产菌株的遗传物质与出发菌株的可能不同D.菌株的高产性状属于有利变异,能传递给子代
分析(1)由已知中函数,以构造一个关于a,b方程组,解方程组求出a,b值,进而得到f(x)的表达式;
(2)由(1)中函数f(x)的表达式,转化为一个方程,分离参数,根据f(x)的定义域即可求出.
(3)根据对数的运算性质,可将方程f(x)=lg(8x+m),转化为一个关于x的分式方程组,进而根据方程f(x)=lg(8x+m)的解集为∅,则方程组至少一个方程无解,或两个方程的解集的交集为空集,分类讨论后,即可得到答案
解答解:(1)∵当x>0时,f(x)-f($\frac{1}{x}$)=lgx.
lg$\frac{2x}{ax+b}$-lg$\frac{\frac{2}{x}}{\frac{a}{x}+b}$=lgx,
即lg-lg=lgx,
即lg($\frac{2x}{ax+b}$•$\frac{a+bx}{2}$)=lgx,
$\frac{2x}{ax+b}$•$\frac{a+bx}{2}$=x.
整理得(a-b)x2-(a-b)x=0恒成立,
∴a=b,
又f(1)=0,
即a+b=2,从而a=b=1.
∴f(x)=lg$\frac{2x}{x+1}$,
∵$\frac{2x}{x+1}$>0,
∴x<-1,或x>0,
∴f(x)的定义域为(-∞,-1)∪(0,+∞)
(2)方程f(x)=lgt有解,
即lg$\frac{2x}{x+1}$=lgt,
∴t=$\frac{2x}{x+1}$,
∴x(2-t)=t,
∴x=$\frac{t}{2-t}$,
∴$\frac{t}{2-t}$<-1,或$\frac{t}{2-t}$>0,
解得t>2,或0<t<2,
∴实数t的取值范围(0,2)∪(2,+∞),
(3)方程f(x)=lg(8x+m)的解集为∅,
∴lg$\frac{2x}{x+1}$=lg(8x+m),
∴$\frac{2x}{x+1}$=8x+m,
∴8x2+(6+m)x+m=0,
方程的解集为∅,故有两种情况:
①方程8x2+(6+m)x+m=0无解,即△<0,得2<m<18,
②方程8x2+(6+m)x+m=0有解,两根均在[-1,0]内,g(x)=8x2+(6+m)x+m
则$\left\{\begin{array}{l}{△≥0}\\{g(-1)≥0}\\{g(0)≥0}\\{-1≤\frac{-6-m}{16}≤0}\end{array}\right.$解得0≤m≤2
综合①②得实数m的取值范围是0≤m<18.
点评本题考查的知识点是对数函数的图象与性质,及对数函数单调性的综合应用,属于中档题.
[永州二模]永州市2023年高考第二次适应性考试数学