高考必刷卷2023年全国高考名校名师联席名制(新高考)信息卷(五)5数学试卷答案,我们目前收集并整理关于高考必刷卷2023年全国高考名校名师联席名制(新高考)信息卷(五)5数学得系列试题及其答案,更多试题答案请关注我们
高考必刷卷2023年全国高考名校名师联席名制(新高考)信息卷(五)5数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
B橙色物及黄色物质红色打氏①上图显示了基因可通过,进而控制生物性状,②根据题意和上图信息可知,控制果皮颜色的基因与(填Aa或Bb.^)基因位于同一对染色体上.
分析(1)求得函数的导数,求得切线的斜率和切点,解方程可得a,b,进而得到f(x)的解析式;
(2)求出f(x)的导数,求得单调区间和极值,结合图象,即可得到方程解的情况.
解答解:(1)∵函数$f(x)=\frac{1}{3}{x^3}+a{x^2}-bx+4$,
f’(x)=x2+2ax-b,
根据题意得f’(2)=4,即4a-b=0,
又$f(2)=8-\frac{10}{3}$,即有$\frac{8}{3}$+4a-2b+4=8-$\frac{10}{3}$,
解得$a=\frac{1}{2},b=2$,
∴$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}{x^2}-2x+4$;
(2)∵$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}{x^2}-2x+4$,
∴f’(x)=x2+x-2=(x+2)(x-1),
令f’(x)>0解得x<-2或x>1,f’(x)<0解得-2<x<1,
即有f(x)的增区间为(-∞,-2),(1,+∞),减区间为(-2,1),
即有x=1处取得极小值,且为$\frac{17}{2}$,x=-2处取得极大值,且为$\frac{22}{3}$.
则当k<$\frac{17}{6}$或k>$\frac{22}{3}$时,方程k=f(x)有一个解;
当k=$\frac{17}{6}$或k=$\frac{22}{3}$时,方程k=f(x)有两个解;
当$\frac{17}{6}$<k<$\frac{22}{3}$时,方程k=f(x)有三个解.
点评本题考查导数的运用:求切线的斜率和单调区间、极值,考查数形结合的思想方法,以及运算能力,属于中档题.
高考必刷卷2023年全国高考名校名师联席名制(新高考)信息卷(五)5数学