河北省衡水中学2023届上学期高三年级四调考试数学试卷答案,我们目前收集并整理关于河北省衡水中学2023届上学期高三年级四调考试数学得系列试题及其答案,更多试题答案请关注我们
河北省衡水中学2023届上学期高三年级四调考试数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
19.某种飞蛾易被蝙蝠捕食,经过长时间的作用,飞蛾群体中出现了部分能感受蝙蝠的超声波,并能运用复杂飞行模式逃避蝙蝠捕食的新飞蛾。新飞蛾和原始飞蛾交配后产生的受精卵不能发育。下列有关叙述错误的是A.新飞蛾的形成经历了突变与基因重组、自然选择、隔离三个环节B.捕食压力促使飞蛾产生了能感受蝙蝠超声波的适应性变异C.经过长期的自然选择,新飞蛾和原始飞蛾属于两个物种D.该实例说明自然选择能使种群的基因频率发生定向改变
分析(1)求出f(x)的导数,求出单调区间,可得极小值,也为最小值;
(2)①由题意可得f′(x)=1+lnx-ax=0的两根为x1,x2.即有a=$\frac{1+lnx}{x}$,设g(x)=$\frac{1+lnx}{x}$,求出导数,求得单调区间和最值,即可得到a的范围;
②由题意可得1+lnx1=ax1,1+lnx2=ax2,两式相加和相减,可得a,要证x1x2>1,即证ln(x1x2)>0,即有(lnx1-lnx2)•$\frac{{x}_{1}+{x}_{2}}{{x}_{1}-{x}_{2}}$>2,即ln$\frac{{x}_{2}}{{x}_{1}}$>2•$\frac{\frac{{x}_{2}}{{x}_{1}}-1}{\frac{{x}_{2}}{{x}_{1}}+1}$在x2>x1成立,(*)由t=$\frac{{x}_{2}}{{x}_{1}}$>1,设h(t)=lnt-2•$\frac{t-1}{t+1}$,求出导数,判断单调性,即可得到证明.
解答解:(1)函数f(x)=xlnx的导数为f′(x)=1+lnx,
当x>$\frac{1}{e}$时,f′(x)>0,f(x)递增;当0<x<$\frac{1}{e}$时,f′(x)<0,f(x)递减.
即有x=$\frac{1}{e}$时,取得最小值,且为-$\frac{1}{e}$;
(2)①f(x)有两个极值点x1,x2(x1<x2),
即为f′(x)=1+lnx-ax=0的两根为x1,x2.
即有a=$\frac{1+lnx}{x}$,设g(x)=$\frac{1+lnx}{x}$,g′(x)=$\frac{-lnx}{{x}^{2}}$,
当x>1时,h′(x)<0,h(x)递减,当0<x<1时,h′(x)>0,h(x)递增.
即有x=1处取得极大值,也为最大值1,
且0<x<$\frac{1}{e}$时,g(x)递增,g(x)<0,当$\frac{1}{e}$<x<1或x>1时,g(x)∈(0,1),
即有0<a<1.故a的取值范围是(0,1);
②证明:由题意可得1+lnx1=ax1,1+lnx2=ax2,
即有2+ln(x1x2)=a(x1+x2),又lnx1-lnx2=a(x1-x2),
即有2+ln(x1x2)=(lnx1-lnx2)•$\frac{{x}_{1}+{x}_{2}}{{x}_{1}-{x}_{2}}$
要证x1x2>1,即证ln(x1x2)>0,即有(lnx1-lnx2)•$\frac{{x}_{1}+{x}_{2}}{{x}_{1}-{x}_{2}}$>2,
即ln$\frac{{x}_{2}}{{x}_{1}}$>2•$\frac{\frac{{x}_{2}}{{x}_{1}}-1}{\frac{{x}_{2}}{{x}_{1}}+1}$在x2>x1成立,(*)
由t=$\frac{{x}_{2}}{{x}_{1}}$>1,设h(t)=lnt-2•$\frac{t-1}{t+1}$,
h′(t)=$\frac{1}{t}$-$\frac{4}{(t+1)^{2}}$=$\frac{(t-1)^{2}}{t(t+1)^{2}}$>0,h(t)在t>1递增,即有h(t)>h(1)=0,
即为lnt>2•$\frac{t-1}{t+1}$,即有(*))成立.
故x1x2>1.
点评本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用构造函数,由导数判断单调性,考查函数方程的转化思想,属于中档题.
河北省衡水中学2023届上学期高三年级四调考试数学