欢迎光临
我们一直在努力

石家庄2022-2023学年高三第一学期第三次调研考试数学试卷答案(更新中)

石家庄2022-2023学年高三第一学期第三次调研考试数学试卷答案,我们目前收集并整理关于石家庄2022-2023学年高三第一学期第三次调研考试数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

石家庄2022-2023学年高三第一学期第三次调研考试数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

14.已知f(x)=exlnx+2ex
(1)求y=f(x)-exlnx-2ex-$\frac{{e}^{x}}{x}$在x∈[$\frac{1}{2}$,2]上的最值;
(2)已知函数h(x)=$\frac{f(x)}{x}$-x-1,数列{an}的通项公式为an=$\frac{1}{n}$,其前n项和为Sn,求证:2×3×4×…×n>${e}^{n-{S}_{n}}$.

分析设动点P到面DAB、面DBC、面DCA的距离分别为h1,h2,h3,由正四面体ABCD的棱长为9,求出每个面面积S=$\frac{81\sqrt{3}}{4}$,高h=3$\sqrt{6}$,由正四面体ABCD的体积得到h1+h2+h3=3$\sqrt{6}$,再由满足P到面DAB、面DBC、面DCA的距离成等差数列,能求出点P到面DCA的距离最大值.

解答解:设动点P到面DAB、面DBC、面DCA的距离分别为h1,h2,h3
∵正四面体ABCD的棱长为9,每个面面积为S=$\frac{1}{2}×9×9×sin60°$=$\frac{81\sqrt{3}}{4}$,
取BC中点E,连结AE.过S作SO⊥面ABC,垂足为O,
则AO=$\frac{2}{3}AE=\frac{2}{3}\sqrt{81-\frac{81}{4}}$=3$\sqrt{3}$,
∴高h=SO=$\sqrt{81-27}$=3$\sqrt{6}$,
∴正四面体ABCD的体积V=$\frac{1}{3}Sh$=$\frac{1}{3}$S(h1+h2+h3),
∴h1+h2+h3=3$\sqrt{6}$,
∵满足P到面DAB、面DBC、面DCA的距离成等差数列,
∴h1+h2+h3=3h2=3$\sqrt{6}$,∴${h}_{2}=\sqrt{6}$,h2+h3=2$\sqrt{6}$,
∴点P到面DCA的距离最大值为2$\sqrt{6}$.
故答案为:2$\sqrt{6}$.

点评本题考查点到平面的距离的最大值的求法,是中档题,解题时要认真审题,注意等差数列、正四面体性质等知识点的合理运用.

试题答案

石家庄2022-2023学年高三第一学期第三次调研考试数学

赞(0)
未经允许不得转载:答案联动网 » 石家庄2022-2023学年高三第一学期第三次调研考试数学试卷答案(更新中)
5.218秒内查询了55次数据库