衡水金卷先享题2022-2023学年度上学期高三四调(新教材)数学试卷答案,我们目前收集并整理关于衡水金卷先享题2022-2023学年度上学期高三四调(新教材)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
衡水金卷先享题2022-2023学年度上学期高三四调(新教材)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
9.将函数f(x)=cos2x的图象向左平移$\frac{π}{3}$个单位得到函数g(x)的图象,则函数g(x)( )
A. | 一个对称中心是(-$\frac{π}{3}$,0) | B. | 一条对称轴方程为x=$\frac{π}{3}$ | ||
C. | 在区间[-$\frac{π}{3}$,0]上单调递减 | D. | 在区间[0,$\frac{π}{3}$]上单调递增 |
分析直接运用组合数的两条性质,${C}_{n}^{m}$=${C}_{n}^{n-m}$和${C}_{n}^{m}$+${C}_{n}^{m+1}$=${C}_{n+1}^{m+1}$,运算求解.
解答解:根据组合数的性质一:${C}_{n}^{m}$=${C}_{n}^{n-m}$,
所以,原式=${C}_{3}^{3}$+${C}_{4}^{3}$+${C}_{5}^{3}$+${C}_{6}^{3}$+…+${C}_{2013}^{3}$,
再根据组合数的性质二:${C}_{n}^{m}$+${C}_{n}^{m+1}$=${C}_{n+1}^{m+1}$,且${C}_{3}^{3}$=${C}_{4}^{4}$,
原式=${C}_{4}^{4}$+${C}_{4}^{3}$+${C}_{5}^{3}$+${C}_{6}^{3}$+…+${C}_{2013}^{3}$,
=${C}_{5}^{4}$+${C}_{5}^{3}$+${C}_{6}^{3}$+…+${C}_{2013}^{3}$,
=${C}_{6}^{4}$+${C}_{6}^{3}$+…+${C}_{2013}^{3}$,
=${C}_{2014}^{4}$,
故选:C.
点评本题主要考查了组合及组合数公式的运算,尤其是组合的两点性质,属于中档题.
衡水金卷先享题2022-2023学年度上学期高三四调(新教材)数学