欢迎光临
我们一直在努力

河南省南阳2022年秋期高中三期中质量评估数学试卷答案(更新中)

河南省南阳2022年秋期高中三期中质量评估数学试卷答案,我们目前收集并整理关于河南省南阳2022年秋期高中三期中质量评估数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

河南省南阳2022年秋期高中三期中质量评估数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

8.设数列{an}的前n项和为Sn,a1=4,数列{$\sqrt{{S}_{n}}$}是公差为2的等差数列.求数列{an}的通项公式.

分析设圆心C,AB为圆C的切线,根据切线的性质得到CB与AB垂直,利用三角形ACB为直角三角形,根据勾股定理即可求出切线长.

解答解:设圆心C,AB为圆C的切线,∴CB⊥AB,
由圆的方程(x-3)2+(y+2)2=25,得到圆心C的坐标为(3,-2),半径r=5,
∴|CB|=5,|AC|=$\sqrt{(3+1)^{2}+(-2-6)^{2}}$=4$\sqrt{5}$,
在Rt△ACB中,根据勾股定理得:|AB|=$\sqrt{80-25}$=$\sqrt{55}$,
则切线长$\sqrt{55}$.
故答案为:$\sqrt{55}$.

点评此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,切线的性质,以及勾股定理,当直线与圆相切时,常常由切线的性质得到垂直,构造直角三角形,利用勾股定理来解决问题.

河南省南阳2022年秋期高中三期中质量评估数学

赞(0)
未经允许不得转载:答案联动网 » 河南省南阳2022年秋期高中三期中质量评估数学试卷答案(更新中)
4.794秒内查询了55次数据库