2022学年青岛二中高三第一学期C8名校协作体数学试卷答案,我们目前收集并整理关于2022学年青岛二中高三第一学期C8名校协作体数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2022学年青岛二中高三第一学期C8名校协作体数学试卷答案,以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
14.使奇函数f(x)=sin(2x+α)在[-$\frac{π}{4}$,0]上为减函数的α的值可以是( )
A. | 0 | B. | $\frac{π}{2}$ | C. | π | D. | $\frac{3}{2}$π |
分析本题可从函数的单调性入手,观察函数解析式,此函数是一个减函数,再根据f(a)f(b)f(c)<0对三个函数值的符号的可能情况进行判断,得出结论.
解答因为f(x)=($\frac{1}{3}$)x-log2x,在定义域上是减函数,
∴0<a<b<c时,f(a)>f(b)>f(c)
又因为f(a)f(b)f(c)<0,
所以一种情况是f(a),f(b),f(c)都为负值,①,
另一种情况是f(a)>0,f(b)>0,f(c)<0.②
对于①要求a,b,c都大于d,
对于②要求a,b都小于d是,c大于d.
两种情况综合可得d>c不可能成立
故答案为:①②③.
点评对数函数的单调性与特殊点;指数函数的单调性与特殊点;不等式比较大小.
2022学年青岛二中高三第一学期C8名校协作体数学