2022~2023学年度第一学期高三年级考试卷(P3005C)数学,我们目前收集并整理关于2022~2023学年度第一学期高三年级考试卷(P3005C)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2022~2023学年度第一学期高三年级考试卷(P3005C)数学,以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
18.下列函数中,在区间(0,+∞)上是增函数的是( )
A. | f(x)=$\frac{2}{x}$ | B. | f(x)=log2x | C. | f(x)=($\frac{1}{2}$)x | D. | f(x)=-x2+2 |
分析(1)由f(x)是偶函数,可得sin(-ωx+φ)=sin(ωx+φ),从而解得ϕ的值.
(2)图象关于点M($\frac{3}{4}$π,0)对称,可得函数关系f($\frac{3}{4}$π-x)=-f($\frac{3}{4}$π+x),可得ω的可能取值,结合单调函数可确定ω的值.
解答解:(1)由f(x)是偶函数,得f(-x)=f(x),
即sin(-ωx+φ)=sin(ωx+φ),
所以-cosφsinωx=cosφsinωx,
对任意x都成立,且w>0,
所以得cosφ=0.
依题设0≤φ≤π,所以解得φ=$\frac{π}{2}$,
(2)①由f(x)的图象关于点M对称,得f($\frac{3}{4}$π-x)=f($\frac{3}{4}$π+x),
取x=0,得f($\frac{3}{4}$π)=sin($\frac{3ωπ}{4}$+$\frac{π}{2}$)=cos$\frac{3ωπ}{4}$,
∴f($\frac{3}{4}$π)=sin($\frac{3ωπ}{4}$+$\frac{π}{2}$)=cos$\frac{3ωπ}{4}$,
∴cos$\frac{3ωπ}{4}$=0,
又w>0,得$\frac{3ωπ}{4}$=$\frac{π}{2}$+kπ,k=0,1,2,3,…
∴ω=$\frac{2}{3}$(2k+1),k=0,1,2,…
②由于ω=$\frac{2}{3}$(2k+1),k=0,1,2,…
当k=0时,ω=$\frac{2}{3}$,f(x)=sin($\frac{2}{3}$x+$\frac{π}{2}$)在[0,$\frac{π}{2}$]上是减函数,满足题意;
当k=1时,ω=2,f(x)=sin(2x+$\frac{π}{2}$)=cos2x,在[0,$\frac{π}{2}$]上是减函数,满足题意;
当k=2时,ω=$\frac{10}{3}$,f(x)=sin($\frac{10}{3}$x+$\frac{π}{2}$)在[0,$\frac{π}{2}$]上不是单调函数;
所以,综合得ω=$\frac{2}{3}$或2.
点评本题主要考查三角函数的图象、单调性、奇偶性等基本知识,以及分析问题和推理计算能力,属于中档题.
2022~2023学年度第一学期高三年级考试卷(P3005C)数学