吉安市高一下学期期末教学质量检测(2023.6)数学试卷答案,我们目前收集并整理关于吉安市高一下学期期末教学质量检测(2023.6)数学得系列试题及其答案,更多试题答案请关注我们
吉安市高一下学期期末教学质量检测(2023.6)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
5.设椭圆M:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且椭圆的长轴长为4.
(1)求椭圆M的方程;
(2)若直线y=$\sqrt{2}$x+m交椭圆M于A,B两点,P(1,$\sqrt{2}$)为椭圆M上一点,求△PAB面积的最大值.
分析分二次项系数为0和不为0讨论,当二次项系数不为0时,借助于二次函数的开口方向和判别式列不等式组求解.
解答解:关于x的不等式(a-2)x2+2(a-2)x-4<0对一切实数x恒成立,
当a=2时,对于一切实数x,不等式(a-2)x2+2(a-2)x-4<0恒成立;
当a≠2时,要使对于一切实数x,不等式(a-2)x2+2(a-2)x-4<0恒成立,
则$\left\{\begin{array}{l}{a-2<0}\\{[2(a-2)]^{2}-4(a-2)(-4)<0}\end{array}\right.$,解得:-2<a<2.
综上,实数a的取值范围是(-2,2].
故选:C.
点评本题考查函数恒成立问题,考查了分类讨论的数学思想方法,训练了不等式恒成立和系数之间的关系,是中档题.
吉安市高一下学期期末教学质量检测(2023.6)数学