江西省2023年九年级第二次学习效果检测数学试卷答案,我们目前收集并整理关于江西省2023年九年级第二次学习效果检测数学得系列试题及其答案,更多试题答案请关注我们
江西省2023年九年级第二次学习效果检测数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
12.复平面上复数z对应的点Z在曲线|z-1|=2上,求复数2z-1-i在复平面上对应点的轨迹方程.(化成直角坐标方程)
分析过A作AP∥A1N交C1C于P,则AM与AP所夹锐角(或直角),就是所求的角,沿侧棱AA1把三棱柱ABC-A1B1C1剪开展开,当路径AM-MN-NA1最短时,最短路径是AA1,由此能求出结果.
解答解:如图5(甲),过A作AP∥A1N交C1C于P,
则AM与AP所夹锐角(或直角),就是所求的角,
沿侧棱AA1把三棱柱ABC-A1B1C1剪开展开,
如图5(乙),当路径AM-MN-NA1最短时,
M、N在线段AA1上,最短路径是AA1,
由此可知,BM=1,CN=2,
故AM=AP=$\sqrt{2}$,MP=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$.
∴($\sqrt{5}$)2=($\sqrt{2}$)2+($\sqrt{2}$)2-$2\sqrt{2}•\sqrt{2}•cos∠MAP•cos∠MAP$=-$\frac{1}{4}$,
故AM与A1N所成的角的余弦值为$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.
点评本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
江西省2023年九年级第二次学习效果检测数学