欢迎光临
我们一直在努力

运城市2022-2023学年第二学期九年级教学质量监测(23-CZ175c)数学试卷 答案(更新中)

运城市2022-2023学年第二学期九年级教学质量监测(23-CZ175c)数学试卷答案,我们目前收集并整理关于运城市2022-2023学年第二学期九年级教学质量监测(23-CZ175c)数学得系列试题及其答案,更多试题答案请关注我们

试题答案

运城市2022-2023学年第二学期九年级教学质量监测(23-CZ175c)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

7.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立直角坐标系,将曲线C1$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)上所有点的横坐标、纵坐标分别伸长为原来的2和$\frac{1}{2}$后得到曲线C2
(1)求曲线C1的极坐标方程和曲线C2的普通方程;
(2)已知直线1:ρ(cosθ+2sinθ)=4,点P在曲线C2上,求点P到直线l的距离的最小值.

分析可以画出图形,根据条件$\overrightarrow{CD}=3\overrightarrow{CE}$,从而根据向量减法的几何意义便可得到$\overrightarrow{PD}-\overrightarrow{PC}=3(\overrightarrow{PE}-\overrightarrow{PC})$,这样可以求出向量$\overrightarrow{PE}$,这样根据平面向量基本定理便可得出m-n的值.

解答解:如图,
$\overrightarrow{BP}=3\overrightarrow{CP}$;
∴BP=3CP;
∴AB=3CE=CD;
∴$\overrightarrow{CD}=3\overrightarrow{CE}$;
∴$\overrightarrow{PD}-\overrightarrow{PC}=3(\overrightarrow{PE}-\overrightarrow{PC})$;
∴∴$\overrightarrow{PE}=\frac{2}{3}\overrightarrow{PC}+\frac{1}{3}\overrightarrow{PD}$
又$\overrightarrow{PE}=m\overrightarrow{PC}+n\overrightarrow{PD}$;
∴由平面向量基本定理得,$\left\{\begin{array}{l}{m=\frac{2}{3}}\\{n=\frac{1}{3}}\end{array}\right.$;
∴$m-n=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$.
故选D.

点评考查相似三角形的对应边的比例关系,向量数乘、减法的几何意义,以及向量数乘的运算,平面向量基本定理.

运城市2022-2023学年第二学期九年级教学质量监测(23-CZ175c)数学

赞(0)
未经允许不得转载:答案联动网 » 运城市2022-2023学年第二学期九年级教学质量监测(23-CZ175c)数学试卷 答案(更新中)
2.044秒内查询了55次数据库

登录

注册