欢迎光临
我们一直在努力

安徽省2022~2023学年度皖北县中联盟5月联考(3451C)数学试卷 答案(更新中)

安徽省2022~2023学年度皖北县中联盟5月联考(3451C)数学试卷答案,我们目前收集并整理关于安徽省2022~2023学年度皖北县中联盟5月联考(3451C)数学得系列试题及其答案,更多试题答案请关注我们

试题答案

安徽省2022~2023学年度皖北县中联盟5月联考(3451C)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

9.正四面体ABCD的棱长为4,内切球的表面积为$\frac{8π}{3}$.

分析(1)记“恰有2人申请A大学或B大学”为事件M,利用n次独立重复试验中事件A恰好发生中k次的概率计算公式能求出恰有2人申请A大学或B大学的概率.
(2)由题意X的所有可能取值为0,1,2,3,4,且X~B(4,$\frac{1}{3}$),由此能求出X的分布列和E(X).

解答解:(1)记“恰有2人申请A大学或B大学”为事件M,
则P(M)=${C}_{4}^{2}(\frac{2}{3})^{2}(\frac{1}{3})^{2}$=$\frac{8}{27}$,
∴恰有2人申请A大学或B大学的概率为$\frac{8}{27}$.
(2)由题意X的所有可能取值为0,1,2,3,4,且X~B(4,$\frac{1}{3}$),
P(X=0)=${C}_{4}^{0}(\frac{2}{3})^{4}$=$\frac{16}{81}$,
P(X=1)=${C}_{4}^{1}(\frac{1}{3})(\frac{2}{3})^{3}$=$\frac{32}{81}$,
P(X=2)=${C}_{4}^{2}(\frac{1}{3})^{2}(\frac{2}{3})^{2}$=$\frac{24}{81}$,
P(X=3)=${C}_{4}^{3}(\frac{1}{3})^{3}(\frac{2}{3})$=$\frac{8}{81}$,
P(X=4)=${C}_{4}^{4}(\frac{1}{3})^{4}$=$\frac{1}{81}$,
∴X的分布列为: X 0 1 2 3 4

 P

 $\frac{16}{81}$

 $\frac{32}{81}$

 $\frac{24}{81}$

 $\frac{8}{81}$

 $\frac{1}{81}$E(X)=4×$\frac{1}{3}$=$\frac{4}{3}$.

点评本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.

安徽省2022~2023学年度皖北县中联盟5月联考(3451C)数学

赞(0)
未经允许不得转载:答案联动网 » 安徽省2022~2023学年度皖北县中联盟5月联考(3451C)数学试卷 答案(更新中)
0.875秒内查询了55次数据库