安徽省涡阳县2022-2023学年度九年级第二次质量监测数学试卷答案,我们目前收集并整理关于安徽省涡阳县2022-2023学年度九年级第二次质量监测数学得系列试题及其答案,更多试题答案请关注我们
安徽省涡阳县2022-2023学年度九年级第二次质量监测数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
17.若一系列函数的解析式相同,值域相同,但定义域不同,称这些函数为同族函数.那么,函数的解析式为y=x2,值域为{4,9}的同族函数共有( )
A. | 7个 | B. | 8个 | C. | 9个 | D. | 10个 |
分析设直线AB的参数方程,可得A,B的坐标,把直线AB的方程代入椭圆的方程,得到根与系数的关系,可得$\frac{1}{|EA{|}^{2}}$+$\frac{1}{|EB{|}^{2}}$=$\frac{1}{{{t}_{1}}^{2}}$+$\frac{1}{{{t}_{2}}^{2}}$=$\frac{2{{x}_{0}}^{2}+12+(24-8{{x}_{0}}^{2})si{n}^{2}α}{({{x}_{0}}^{2}-6)^{2}}$,由于$\frac{1}{|EA{|}^{2}}$+$\frac{1}{|EB{|}^{2}}$为定值m,因此24-8x02=0,解出即可.
解答解:设直线AB的方程为$\left\{\begin{array}{l}{x={x}_{0}+tcosα}\\{y=tsinα}\end{array}\right.$,
A(x0+t1cosα,t1sinα),B(x0+t2cosα,t2sinα).
把直线AB的方程代入椭圆的方程x2+3y2=6,
化为(1+2sin2α)t2+2x0tcosα+x02-6=0.
∴t1+t2=-$\frac{2{x}_{0}cosα}{1+2si{n}^{2}α}$,t1t2=$\frac{{{x}_{0}}^{2}-6}{1+2si{n}^{2}α}$.
∴t12+t22=(t1+t2)2-2t1t2=$\frac{2{{x}_{0}}^{2}+12+(24-8{{x}_{0}}^{2})si{n}^{2}α}{(1+2si{n}^{2}α)^{2}}$,
∴$\frac{1}{|EA{|}^{2}}$+$\frac{1}{|EB{|}^{2}}$=$\frac{1}{{{t}_{1}}^{2}}$+$\frac{1}{{{t}_{2}}^{2}}$=$\frac{2{{x}_{0}}^{2}+12+(24-8{{x}_{0}}^{2})si{n}^{2}α}{({{x}_{0}}^{2}-6)^{2}}$,
∵$\frac{1}{|EA{|}^{2}}$+$\frac{1}{|EB{|}^{2}}$为定值,
∴24-8x02=0,又x0>0.
解得x0=$\sqrt{3}$,m=$\frac{6+12}{9}$=2.
故答案为:$\sqrt{3}$,2.
点评本题考查了直线与椭圆相交定值问题转化为方程联立得到根与系数的关系、直线的参数方程及其参数的意义,考查了推理能力和计算能力,属于中档题.
安徽省涡阳县2022-2023学年度九年级第二次质量监测数学