江苏省常州市省常中2022-2023高考数学四模试卷(含解析)
2023年高考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记为等差数列的前项和.若,,则( )
A.5 B.3 C.-12 D.-13
2.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )
A.2 B.3 C.4 D.5
3.函数f(x)=的图象大致为()
A. B.
C. D.
4.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为( )
A. B. C. D.
5.若双曲线的渐近线与圆相切,则双曲线的离心率为( )
A.2 B. C. D.
6.已知,,,则a,b,c的大小关系为( )
A. B. C. D.
7.设命题函数在上递增,命题在中,,下列为真命题的是( )
A. B. C. D.
8.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为( )
A. B. C. D.
9.如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则( )
A. B. C. D.
10.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积( )
A. B. C. D.
11.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家 天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是( )
A. B.
C. D.
12.若x,y满足约束条件则z=的取值范围为( )
A.[] B.[,3] C.[,2] D.[,2]
二、填空题:本题共4小题,每小题5分,共20分。
13.实数,满足约束条件,则的最大值为__________.
14.设全集,集合,,则集合______.
15.设随机变量服从正态分布,若,则的值是______.
16.的展开式中,常数项为______;系数最大的项是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在四棱锥中,侧面为等边三角形,且垂直于底面, ,分别是的中点.
(1)证明:平面平面;
(2)已知点在棱上且,求直线与平面所成角的余弦值.
18.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线和直线的极坐标方程;
(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.
19.(12分)已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.
(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;
(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.
20.(12分)诚信是立身之本,道德之基,我校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:
第一周 第二周 第三周 第四周
第一周期
第二周期
第三周期
(Ⅰ)计算表中十二周“水站诚信度”的平均数;
(Ⅱ)若定义水站诚信度高于的为“高诚信度”,以下为“一般信度”则从每个周期的前两周中随机抽取两周进行调研,计算恰有两周是“高诚信度”的概率;
(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.
21.(12分)已知函数,.
(1)若曲线在点处的切线方程为,求,;
(2)当时,,求实数的取值范围.
22.(10分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
由题得,,解得,,计算可得.
【详解】
,,,,解得,,
.
故选:B
【点睛】
本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.
2、D
【解析】
试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.
考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.
点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.
3、D
【解析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.
【详解】
因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.
又f(2)==-<0.排除A,故选D.
【点睛】
本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.
4、B
【解析】
根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.
【详解】
函数
则函数的最大值为2,
存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即
故答案为:B.
【点睛】
这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.
5、C
【解析】
利用圆心到渐近线的距离等于半径即可建立间的关系.
【详解】
由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,
所以,.
故选:C.
【点睛】
本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.
6、D
【解析】
与中间值1比较,可用换底公式化为同底数对数,再比较大小.
【详解】
,,又,∴,即,
∴.
故选:D.
【点睛】
本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较.
7、C
【解析】
命题:函数在上单调递减,即可判断出真假.命题:在中,利用余弦函数单调性判断出真假.
【详解】
解:命题:函数,所以,当时,,即函数在上单调递减,因此是假命题.
命题:在中,在上单调递减,所以,是真命题.
则下列命题为真命题的是.
故选:C.
【点睛】
本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.
8、B
【解析】
由题可知,,再结合双曲线第一定义,可得,对有,
即,解得,再对,由勾股定理可得,化简即可求解
【详解】
如图,因为,所以.因为所以.
在中,,即,
得,则.在中,由得.
故选:B
【点睛】
本题考查双曲线的离心率求法,几何性质的应用,属于中档题
9、A
【解析】
作于,于,分析可得,,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.
【详解】
作于,于.
因为平面平面,平面.故,
故平面.故二面角为.
又直线与平面所成角为,因为,
故.故,当且仅当重合时取等号.
又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.
故.
故选:A
【点睛】
本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.
10、C
【解析】
由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.
【详解】
由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.
故选C.
【点睛】
本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.
11、B
【解析】
执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.
【详解】
由题意,执行给定的程序框图,输入,可得:
第1次循环:;
第2次循环:;
第3次循环:;
第10次循环:,
此时满足判定条件,输出结果,
故选:B.
【点睛】
本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
12、D
【解析】
由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.
【详解】
由题意作出可行域,如图,
目标函数可表示连接点和可行域内的点的直线斜率的倒数,
由图可知,直线的斜率最小,直线的斜率最大,
由可得,由可得,
所以,,所以.
故选:D.
【点睛】
本题考查了非线性规划的应用,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、10
【解析】
画出可行域,根据目标函数截距可求.
【详解】
解:作出可行域如下:
由得,平移直线,
当经过点时,截距最小,最大
解得
的最大值为10
故答案为:10
【点睛】
考查可行域的画法及目标函数最大值的求法,基础题.
14、
【解析】
分别解得集合A与集合B的补集,再由集合交集的运算法则计算求得答案.
【详解】
由题可知,集合A中
集合B的补集,则
故答案为:
【点睛】
本题考查集合的交集与补集运算,属于基础题.
15、1
【解析】
由题得,解不等式得解.
【详解】
因为,
所以,
所以c=1.
故答案为1
【点睛】
本题主要考查正态分布的图像和性质,意在考查学生对该知识的理解掌握水平和分析推理能力.
16、
【解析】
求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.
【详解】
的展开式的通项为,
令,得,所以,展开式中的常数项为;
令,令,即,
解得,,,因此,展开式中系数最大的项为.
故答案为:;.
【点睛】
本题考查二项展开式中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)证明见解析;(2).
【解析】
(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;
(2)由(1)可知,两两垂直,故建立空间直角坐标系,可求得面PAB的法向量,再运用线面角的向量求法,可求得直线与平面所成角的余弦值.
【详解】
(1),,又,,,
而、分别是、的中点,, 故面,
又且,故四边形是平行四边形,面,
又,是面内的两条相交直线, 故面面.
(2)由(1)可知,两两垂直,故建系如图所示,则
,
,,,
设是平面PAB的法向量,,
令,则,,
直线NE与平面所成角的余弦值为.
【点睛】
本题考查空间的面面平行的判定,以及线面角的空间向量的求解方法,属于中档题.
18、(1),.(2)
【解析】
(1)先将曲线的参数方程化为直角坐标方程,即可代入公式化为极坐标;根据直线的直角坐标方程,求得倾斜角,即可得极坐标方程.
(2)将直线的极坐标方程代入曲线、可得,进而代入可得的值.
【详解】
(1)曲线的参数方程为(为参数),
消去得,
把,代入得,
从而得的极坐标方程为,
∵直线的直角坐标方程为,其倾斜角为,
∴直线的极坐标方程为.
(2)将代入曲线的极坐标方程分别得到
,
则.
【点睛】
本题考查了参数方程化为普通方程的方法,直角坐标方程化为极坐标方程的方法,极坐标的几何意义,属于中档题.
19、(1)曲线的标准方程为.抛物线的标准方程为.(2)见解析
【解析】
(1)由题知|PF1|+|PF2|2|F1F2|,判断动点P的轨迹W是椭圆,写出椭圆的标准方程,根据平面向量数量积运算和点A在抛物线上求出抛物线C的标准方程;(2)设出点P的坐标,再表示出点N和Q的坐标,根据题意求出的值,即可判断结果是否成立.
【详解】
(1)由题知,,
所以 ,
因此动点的轨迹是以,为焦点的椭圆,
又知,,
所以曲线的标准方程为.
又由题知,
所以 ,
所以,
又因为点在抛物线上,所以,
所以抛物线的标准方程为.
(2)设,,
由题知,所以,即,
所以 ,
又因为,,
所以,
所以为定值,且定值为1.
【点睛】
本题考查了圆锥曲线的定义与性质的应用问题,考查抛物线的几何性质及点在曲线上的代换,也考查了推理与运算能力,是中档题.
20、(Ⅰ);(Ⅱ);(Ⅲ)两次活动效果均好,理由详见解析.
【解析】
(Ⅰ)结合表中的数据,代入平均数公式求解即可;
(Ⅱ)设抽到“高诚信度”的事件为,则抽到“一般信度”的事件为,则随机抽取两周,则有两周为“高诚信度”事件为,利用列举法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率计算公式求解即可;
(Ⅲ)结合表中的数据判断即可.
【详解】
(Ⅰ)表中十二周“水站诚信度”的平均数
.
(Ⅱ)设抽到“高诚信度”的事件为,则抽到“一般信度”的事件为,则随机抽取两周均为“高诚信度”事件为,总的基本事件为共15种,
事件所包含的基本事件为共10种,
由古典概型概率计算公式可得,.
(Ⅲ)两次活动效果均好.
理由:活动举办后,“水站诚信度'由和看出,后继一周都有提升.
【点睛】
本题考查平均数公式和古典概型概率计算公式;考查运算求解能力;利用列举法正确列举出所有的基本事件是求古典概型概率的关键;属于中档题、常考题型.
21、(1);(2)
【解析】
(1)对函数求导,运用可求得的值,再由在直线上,可求得的值;
(2)由已知可得恒成立,构造函数,对函数求导,讨论和0的大小关系,结合单调性求出最大值即可求得的范围.
【详解】
(1)由题得,
因为在点与相切
所以,∴
(2)由得,令,只需
,设(),
当时,,在时为增函数,所以,舍;
当时,开口向上,对称轴为,,所以在时为增函数,
所以,舍;
当时,二次函数开口向下,且,
所以在时有一个零点,在时,在时,
①当即时,在小于零,
所以在时为减函数,所以,符合题意;
②当即时,在大于零,
所以在时为增函数,所以,舍.
综上所述:实数的取值范围为
【点睛】
本题考查函数的导数,利用导数求函数的单调区间及函数的最小值,属于中档题.处理函数单调性问题时,注意利用导函数的正负,特别是已知单调性问题,转化为函数导数恒不小于零,或恒小于零,再分离参数求解,求函数最值时分析好单调性再求极值,从而求出函数最值.
22、(1)(2)
【解析】
(1)首先将参数方程转化为普通方程再根据公式化为极坐标方程即可;
(2)设,,由,即可求出,则计算可得;
【详解】
解:(1)圆的参数方程(为参数)可化为,
∴,即圆的极坐标方程为.
(2)设,由,解得.
设,由,解得.
∵,∴.
【点睛】
本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与计算能力,属于中档题.