欢迎您光临本站https://www.booksld.com,如有问题请及时联系我们。

广东省北大附中2022-2023高三3月份模拟考试数学试题(含解析)

2023年高考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将函数的图像向左平移个单位得到函数的图像,则的最小值为( )
A. B. C. D.
2.要得到函数的图象,只需将函数图象上所有点的横坐标( )
A.伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度
B.伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度
C.缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度
D.缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度
3.的展开式中的一次项系数为( )
A. B. C. D.
4.若,则实数的大小关系为( )
A. B. C. D.
5.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为( )
A. B. C. D.
6.设全集U=R,集合,则( )
A.{x|-1 7.双曲线的渐近线方程为( )
A. B.
C. D.
8.直三棱柱中,,,则直线与所成的角的余弦值为( )
A. B. C. D.
9.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是( )
A.若m⊥α,n//α,则m⊥n B.若m//α,n//α,则m//n
C.若l⊥α,l//β,则α⊥β D.若α//β,lβ,且l//α,则l//β
10.已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,,则的渐近线方程为( )
A. B. C. D.
11.已知向量,,且,则( )
A. B. C.1 D.2
12.已知倾斜角为的直线与直线垂直,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.关于函数有下列四个命题:
①函数在上是增函数;
②函数的图象关于中心对称;
③不存在斜率小于且与函数的图象相切的直线;
④函数的导函数不存在极小值.
其中正确的命题有______.(写出所有正确命题的序号)
14.已知向量,满足,,且已知向量,的夹角为,,则的最小值是__.
15.已知,,则与的夹角为 .
16.已知向量,,若,则实数______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆经过点,离心率为.
(1)求椭圆的方程;
(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称.连接.求证:存在实数,使得成立.
18.(12分)某商场举行有奖促销活动,顾客购买每满元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有点数的正方体骰子次,若掷得点数大于,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖,已知抽奖箱中装有个红球与个白球,抽奖者从箱中任意摸出个球,若个球均为红球,则获得一等奖,若个球为个红球和个白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).
若,求顾客参加一次抽奖活动获得三等奖的概率;
若一等奖可获奖金元,二等奖可获奖金元,三等奖可获奖金元,记顾客一次抽奖所获得的奖金为,若商场希望的数学期望不超过元,求的最小值.
19.(12分)在中,角,,所对的边分别是,,,且.
(1)求的值;
(2)若,求的取值范围.
20.(12分)在平面直角坐标系中,有一个微型智能机器人(大小不计)只能沿着坐标轴的正方向或负方向行进,且每一步只能行进1个单位长度,例如:该机器人在点处时,下一步可行进到、、、这四个点中的任一位置.记该机器人从坐标原点出发、行进步后落在轴上的不同走法的种数为.
(1)分别求、、的值;
(2)求的表达式.
21.(12分)已知函数.
(1)解不等式;
(2)使得,求实数的取值范围.
22.(10分)选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.
(1)写出直线的普通方程与曲线的直角坐标方程;
(2)设直线上的定点在曲线外且其到上的点的最短距离为,试求点的坐标.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.
【详解】
将函数的图象向左平移个单位,
得到,
此时与函数的图象重合,
则,即,,
当时,取得最小值为,
故选:.
【点睛】
本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.
2、B
【解析】
分析:根据三角函数的图象关系进行判断即可.
详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),
得到
再将得到的图象向左平移个单位长度得到
故选B.
点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键.
3、B
【解析】
根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论.
【详解】
由题意展开式中的一次项系数为.
故选:B.
【点睛】
本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式.
4、A
【解析】
将化成以 为底的对数,即可判断 的大小关系;由对数函数、指数函数的性质,可判断出 与1的大小关系,从而可判断三者的大小关系.
【详解】
依题意,由对数函数的性质可得.
又因为,故.
故选:A.
【点睛】
本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.
5、B
【解析】
由题,侧棱底面,,,,则根据余弦定理可得 ,的外接圆圆心
三棱锥的外接球的球心到面的距离 则外接球的半径 ,则该三棱锥的外接球的表面积为
点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径 公式是解答的关键.
6、C
【解析】
解一元二次不等式求得集合,由此求得
【详解】
由,解得或.
因为或,所以.
故选:C
【点睛】
本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.
7、A
【解析】
将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.
【详解】
双曲线得,则其渐近线方程为,
整理得.
故选:A
【点睛】
本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.
8、A
【解析】
设,延长至,使得,连,可证,得到(或补角)为所求的角,分别求出,解即可.
【详解】
设,延长至,使得,
连,在直三棱柱中,,
,四边形为平行四边形,
,(或补角)为直线与所成的角,
在中,,
在中,,
在中,

在中,,
在中,.
故选:A.
【点睛】
本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.
9、B
【解析】
根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.
【详解】
A.若,则在中存在一条直线,使得,则,又,那么,故正确;
B.若,则或相交或异面,故不正确;
C.若,则存在,使,又,则,故正确.
D.若,且,则或,又由,故正确.
故选:B
【点睛】
本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.
10、D
【解析】
根据为等腰三角形,可求出点P的坐标,又由的斜率为可得出关系,即可求出渐近线斜率得解.
【详解】
如图,
因为为等腰三角形,,
所以,,

又,

解得,
所以双曲线的渐近线方程为,
故选:D
【点睛】
本题主要考查了双曲线的简单几何性质,属于中档题.
11、A
【解析】
根据向量垂直的坐标表示列方程,解方程求得的值.
【详解】
由于向量,,且,所以解得.
故选:A
【点睛】
本小题主要考查向量垂直的坐标表示,属于基础题.
12、D
【解析】
倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.
【详解】
解:因为直线与直线垂直,所以,.
又为直线倾斜角,解得.
故选:D.
【点睛】
本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、①②③
【解析】
由单调性、对称性概念、导数的几何意义、导数与极值的关系进行判断.
【详解】
函数的定义域是,
由于,
在上递增,∴函数在上是递增,①正确;
,∴函数的图象关于中心对称,②正确;
,时取等号,∴③正确;
,设,则,显然是即的极小值点,④错误.
故答案为:①②③.
【点睛】
本题考查函数的单调性、对称性,考查导数的几何意义、导数与极值,解题时按照相关概念判断即可,属于中档题.
14、
【解析】
求的最小值可以转化为求以AB为直径的圆到点O的最小距离,由此即可得到本题答案.
【详解】
如图所示,设,
由题,得,
又,所以,则点C在以AB为直径的圆上,
取AB的中点为M,则,
设以AB为直径的圆与线段OM的交点为E,则的最小值是,
因为,
又,
所以的最小值是.
故答案为:
【点睛】
本题主要考查向量的综合应用问题,涉及到圆的相关知识与余弦定理,考查学生的分析问题和解决问题的能力,体现了数形结合的数学思想.
15、
【解析】
根据已知条件,去括号得:,
16、-2
【解析】
根据向量坐标运算可求得,根据平行关系可构造方程求得结果.
【详解】
由题意得:
,解得:
本题正确结果:
【点睛】
本题考查向量的坐标运算,关键是能够利用平行关系构造出方程.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)证明见解析
【解析】
(1)由点可得,由,根据即可求解;
(2)设直线的方程为,联立可得,设,由韦达定理可得,再根据直线的斜率公式求得;由点B与点Q关于原点对称,可设,可求得,则,即可求证.
【详解】
解:(1)由题意可知,,
又,得,
所以椭圆的方程为
(2)证明:设直线的方程为,
联立,可得,
设,
则有,
因为,
所以,
又因为点B与点Q关于原点对称,所以,即,
则有,由点在椭圆上,得,所以,
所以,即,
所以存在实数,使成立
【点睛】
本题考查椭圆的标准方程,考查直线的斜率公式的应用,考查运算能力.
18、;.
【解析】
设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,求出;
由题意可知,随机变量的可能取值为,,,相应求出概率,求出期望,化简得,由题意可知,,即,求出的最小值.
【详解】
设顾客获得三等奖为事件,
因为顾客掷得点数大于的概率为,
顾客掷得点数小于,然后抽将得三等奖的概率为,
所以;
由题意可知,随机变量的可能取值为,,,
且,


所以随机变量的数学期望,

化简得,
由题意可知,,即,
化简得,因为,解得,
即的最小值为.
【点睛】
本题主要考查概率和期望的求法,属于常考题.
19、 (1);(2)
【解析】
(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得,进而求得和,代入求得结果;
(2)利用正弦定理可将表示为,利用两角和差正弦公式、辅助角公式将其整理为,根据正弦型函数值域的求解方法,结合的范围可求得结果.
【详解】
(1)由正弦定理可得:

(2)由(1)知:

,即的取值范围为
【点睛】
本题考查解三角形知识的相关应用,涉及到正弦定理边化角的应用、两角和差正弦公式和辅助角公式的应用、与三角函数值域有关的取值范围的求解问题;求解取值范围的关键是能够利用正弦定理将边长的问题转化为三角函数的问题,进而利用正弦型函数值域的求解方法求得结果.
20、(1),,,(2)
【解析】
(1)根据机器人的进行规律可确定、、的值;
(2)首先根据机器人行进规则知机器人沿轴行进步,必须沿轴负方向行进相同的步数,而余下的每一步行进方向都有两个选择(向上或向下),由此结合组合知识确定机器人的每一种走法关于的表达式,并得到的表达式,然后结合二项式定理及展开式的通项公式进行求解.
【详解】
解:(1)
,
,
(2)设为沿轴正方向走的步数(每一步长度为1),则反方向也需要走步才能回到轴上,所以,1,2,……,,(其中为不超过的最大整数)
总共走步,首先任选步沿轴正方向走,再在剩下的步中选步沿轴负方向走,最后剩下的每一步都有两种选择(向上或向下),即
等价于求中含项的系数,为
其中含项的系数为
故.
【点睛】
本题考查组合数、二项式定理,考查学生的逻辑推理能力,推理论证能力以及分类讨论的思想.
21、(1);(2)或 .
【解析】
(1)分段讨论得出函数的解析式,再分范围解不等式,可得解集;
(2)先求出函数的最小值,再建立关于的不等式,可求得实数的取值范围.
【详解】
(1)因为 ,
所以当时,;
当时, 无解;
当时,;
综上,不等式的解集为;
(2),
又,
或 .
【点睛】
本题考查分段函数,绝对值不等式的解法,以及关于函数的存在和任意的问题,属于中档题.
22、(1)的普通方程为.的直角坐标方程为 (2)(-1,0)或(2,3)
【解析】
(1)对直线的参数方程消参数即可求得直线的普通方程,对整理并两边乘以,结合,即可求得曲线的直角坐标方程。
(2)由(1)得:曲线C是以Q(1,1)为圆心,为半径的圆,设点P的坐标为,由题可得:,利用两点距离公式列方程即可求解。
【详解】
解:(1)由消去参数,得.
即直线的普通方程为.
因为
又,
∴曲线的直角坐标方程为
(2)由知,曲线C是以Q(1,1)为圆心,为半径的圆
设点P的坐标为,则点P到上的点的最短距离为|PQ|
即,整理得,解得
所以点P的坐标为(-1,0)或(2,3)
【点睛】
本题主要考查了参数方程化为普通方程及极坐标方程化为直角坐标方程,还考查了转化思想及两点距离公式,考查了方程思想及计算能力,属于中档题。

来源:本文由免费找卷子答案网站-答案联动网网络整理发布,如有侵权,请联系我们删除!,欢迎分享本文,转载请保留出处和链接!