欢迎您光临本站https://www.booksld.com,如有问题请及时联系我们。

2023届江西省吉安市新干县第二中学高考压轴卷数学试卷(含解析)

2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知角的终边经过点,则
A. B.
C. D.
2.已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为( )
A. B. C. D.
3.如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )
A. B. C. D.
4.执行下面的程序框图,则输出的值为 ( )
A. B. C. D.
5.是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的外接球的表面积最小时,四棱锥的体积为( )
A. B. C. D.
6.展开式中x2的系数为( )
A.-1280 B.4864 C.-4864 D.1280
7.若均为任意实数,且,则 的最小值为( )
A. B. C. D.
8.已知分别为圆与的直径,则的取值范围为( )
A. B. C. D.
9.的展开式中,项的系数为( )
A.-23 B.17 C.20 D.63
10.在棱长为2的正方体ABCD A1B1C1D1中,P为A1D1的中点,若三棱锥P ABC的四个顶点都在球O的球面上,则球O的表面积为( )
A.12 B. C. D.10
11.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为( )
A.正相关,相关系数的值为
B.负相关,相关系数的值为
C.负相关,相关系数的值为
D.正相关,相关负数的值为
12.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:
若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( )
A.324 B.522 C.535 D.578
二、填空题:本题共4小题,每小题5分,共20分。
13.记Sk=1k+2k+3k+……+nk,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=_____.
14.给出下列等式:,,,…请从中归纳出第个等式:______.
15.已知关于的方程在区间上恰有两个解,则实数的取值范围是________
16.在中,内角的对边分别是,若,,则____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知不等式对于任意的恒成立.
(1)求实数m的取值范围;
(2)若m的最大值为M,且正实数a,b,c满足.求证.
18.(12分)设函数,.
(1)求函数的极值;
(2)对任意,都有,求实数a的取值范围.
19.(12分)已知函数.
(1)讨论的单调性;
(2)函数,若对于,使得成立,求的取值范围.
20.(12分)已知椭圆:(),与轴负半轴交于,离心率.
(1)求椭圆的方程;
(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.
21.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.
(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)
(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;
(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常 并说明理由.
22.(10分)如图,四边形是边长为3的菱形,平面.
(1)求证:平面;
(2)若与平面所成角为,求二面角的正弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
因为角的终边经过点,所以,则,
即.故选D.
2、D
【解析】
根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.
【详解】
类产品共两件,类产品共三件,
则第一次检测出类产品的概率为;
不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;
故第一次检测出类产品,第二次检测出类产品的概率为;
故选:D.
【点睛】
本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.
3、B
【解析】
根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积.
【详解】
解:分析题意可知,如下图所示,
该几何体为一个正方体中的三棱锥,
最大面的表面边长为的等边三角形,
故其面积为,
故选B.
【点睛】
本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题.
4、D
【解析】
根据框图,模拟程序运行,即可求出答案.
【详解】
运行程序,





,结束循环,
故输出,
故选:D.
【点睛】
本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.
5、D
【解析】
首先由题意得,当梯形的外接圆圆心为四棱锥的外接球球心时,外接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.
【详解】
如图,四边形为等腰梯形,则其必有外接圆,设为梯形的外接圆圆心,
当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,
、分别为、的中点,则必有,
,即为直角三角形.
对于等腰梯形,如图:
因为是等边三角形,、、分别为、、的中点,
必有,
所以点为等腰梯形的外接圆圆心,即点与点重合,如图
,,
所以四棱锥底面的高为,
.
故选:D.
【点睛】
本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个是一个难点,考查了学生空间想象能力和分析能力,是一道难度较大的题目.
6、A
【解析】
根据二项式展开式的公式得到具体为:化简求值即可.
【详解】
根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为:
化简得到-1280 x2
故得到答案为:A.
【点睛】
求二项展开式有关问题的常见类型及解题策略:
(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.
(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.
7、D
【解析】
该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.
【详解】
由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,
故选D.
【点睛】
本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.
8、A
【解析】
由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解
【详解】
如图,其中,所以
.
故选:A
【点睛】
本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题
9、B
【解析】
根据二项式展开式的通项公式,结合乘法分配律,求得的系数.
【详解】
的展开式的通项公式为.则
①出,则出,该项为:;
②出,则出,该项为:;
③出,则出,该项为:;
综上所述:合并后的项的系数为17.
故选:B
【点睛】
本小题考查二项式定理及展开式系数的求解方法等基础知识,考查理解能力,计算能力,分类讨论和应用意识.
10、C
【解析】
取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ ADP为直三棱柱,此直三棱柱和三棱锥P ABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径
【详解】
如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ ADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4πR2=,
故选:C.
【点睛】
此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.
11、C
【解析】
根据正负相关的概念判断.
【详解】
由散点图知随着的增大而减小,因此是负相关.相关系数为负.
故选:C.
【点睛】
本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.
12、D
【解析】
因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.
【详解】
从第6行第6列开始向右读取数据,编号内的数据依次为:
,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.
【点睛】
本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.
【详解】
根据所给的已知等式得到:各等式右边各项的系数和为1,
最高次项的系数为该项次数的倒数,
∴A,A1,解得B,所以A﹣B.
故答案为:.
【点睛】
本题考查了归纳推理,意在考查学生的推理能力.
14、
【解析】
通过已知的三个等式,找出规律,归纳出第个等式即可.
【详解】
解:因为:,,,
等式的右边系数是2,且角是等比数列,公比为,则角满足:第个等式中的角,
所以;
故答案为:.
【点睛】
本题主要考查归纳推理,注意已知表达式的特征是解题的关键,属于中档题.
15、
【解析】
先换元,令,将原方程转化为,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出.
【详解】
因为关于的方程在区间上恰有两个解,令,所以方程在 上只有一解,即有 ,
直线与 在的图像有一个交点,
由图可知,实数的取值范围是,但是当时,还有一个根,所以此时共有3个根.
综上实数的取值范围是.
【点睛】
本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式.
16、
【解析】
由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得角.
【详解】
根据正弦定理:
可得
根据余弦定理:
由已知可得:
故可联立方程:
解得:.

故答案为:.
【点睛】
本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)证明见解析
【解析】
(1)法一:,,得,则,由此可得答案;
法二:由题意,令,易知是偶函数,且时为增函数,由此可得出答案;
(2)由(1)知,,即,结合“1”的代换,利用基本不等式即可证明结论.
【详解】
解:(1)法一:(当且仅当时取等号),
又(当且仅当时取等号),
所以(当且仅当时取等号),
由題意得,则,解得,
故的取值范围是;
法二:因为对于任意恒有成立,即,
令,易知是偶函数,且时为增函数,
所以,即,则,解得,
故的取值范围是;
(2)由(1)知,,即,


故不等式成立.
【点睛】
本题主要考查绝对值不等式的恒成立问题,考查基本不等式的应用,属于中档题.
18、(1)当时, 无极值;当时, 极小值为;(2).
【解析】
(1)求导,对参数进行分类讨论,即可容易求得函数的极值;
(2)构造函数,两次求导,根据函数单调性,由恒成立问题求参数范围即可.
【详解】
(1)依题,
当时,,函数在上单调递增,此时函数无极值;
当时,令,得,
令,得
所以函数在上单调递增,
在上单调递减.
此时函数有极小值,
且极小值为.
综上:当时,函数无极值;
当时,函数有极小值,
极小值为.
(2)令
易得且,

所以,
因为,,从而,
所以,在上单调递增.

若,则
所以在上单调递增,从而,
所以时满足题意.
若,
所以,,
在中,令,由(1)的单调性可知,
有最小值,从而.
所以
所以,由零点存在性定理:
,使且
在上单调递减,在上单调递增.
所以当时,.
故当,不成立.
综上所述:的取值范围为.
【点睛】
本题考查利用导数研究含参函数的极值,涉及由恒成立问题求参数范围的问题,属压轴题.
19、(1)当时,在上增;当时,在上减,在上增(2)
【解析】
(1)求出导函数,分类讨论确定的正负,确定单调区间;
(2)题意说明,利用导数求出的最小值,由(1)可得的最小值,从而得出结论.
【详解】
解:(1)定义域为
当时,即在上增;
当时,即得得
综上所述,当时,在上增;
当时,在上减,在上增
(2)由题
在上增
由(1)当时,在上增,所以此时无最小值;
当时,在上减,在上增,
即,解得
综上
【点睛】
本题考查用导数求函数的单调区间,考查不等式恒成立问题,解题关键是掌握转化与化归思想,本题恒成立问题转化为,求出两函数的最小值后可得结论.
20、(1) (2)证明见解析;定点坐标为
【解析】
(1)由条件直接算出即可
(2)由得,,,由可得,同理,然后由推出即可
【详解】
(1)由题有,.∴,∴.
∴椭圆方程为.
(2)由得
,.又
∴,
同理






∴,此时满足

∴直线恒过定点
【点睛】
涉及椭圆的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体带入”等解法.
21、(1)60;25(2)见解析,2.1(3)可以认为该校学生的体重是正常的.见解析
【解析】
(1)根据频率分布直方图可求出平均值和样本方差;
(2)由题意知服从二项分布,分别求出,,,,进而可求出分布列以及数学期望;
(3)由第一问可知服从正态分布,继而可求出的值,从而可判断.
【详解】
解:(1)
(2)由已知可得从全校学生中随机抽取1人,体重在的概率为0.7.
随机拍取3人,相当于3次独立重复实验,随机交量服从二项分布,
则,,
,,
所以的分布列为:
0 1 2 3
0.027 0.189 0.441 0.343
数学期望
(3)由题意知服从正态分布,
则,
所以可以认为该校学生的体重是正常的.
【点睛】
本题考查了由频率分布直方图求进行数据估计,考查了二项分布,考查了正态分布.注意,统计类问题,如果题目中没有特殊说明,则求出数据的精度和题目中数据的小数后位数相同.
22、(1)证明见解析(2)
【解析】
(1)由已知线面垂直得,结合菱形对角线垂直,可证得线面垂直;
(2)由已知知两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,由已知线面垂直知与平面所成角为,这样可计算出的长,写出各点坐标,求出平面的法向量,由法向量夹角可得二面角.
【详解】
证明:(1)因为平面,平面,所以.
因为四边形是菱形,所以.
又因为,平面,平面,
所以平面.
解:(2)据题设知,两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,
因为与平面所成角为,即,所以
又,所以,
所以
所以
设平面的一个法向量,则令,则.
因为平面,所以为平面的一个法向量,且
所以,

所以二面角的正弦值为.
【点睛】
本题考查线面垂直的判定定理和性质定理,考查用向量法求二面角.立体几何中求空间角常常是建立空间直角坐标系,用空间向量法求空间角,这样可减少思维量,把问题转化为计算.

来源:本文由免费找卷子答案网站-答案联动网网络整理发布,如有侵权,请联系我们删除!,欢迎分享本文,转载请保留出处和链接!