奥数拓展第八讲:分数与百分数综合-数学六年级上册苏教版(含解析)
奥数拓展第八讲:分数与百分数综合-数学六年级上册苏教版
一、选择题
1.两根同样长的绳子,第一根剪去10%,第二根剪去米长,剩下的绳子( )。
A.同样长 B.第一根长 C.第二根长 D.不能确定哪根长
2.学校栽种一批树苗,成活100棵,死亡5棵,求这批树苗的成活率,列式正确的是( )。
A. B. C. D.
3.已知(a、b、c均不为0),a、b、c这三个数中最小的是( )。
A.a B.b C.c
4.一盒棋子(只有黑白两色),其中白、黑棋子数的比是3∶2,下列说法中错误的是( )。
A.白子数是黑子数的1.5倍
B.黑子数和白子数的比是2∶3
C.白子数比黑子数多
D.黑子数占一盒棋子数的40%
5.甲、乙两桶装有同一种消毒液,甲桶用去,乙桶用去30%,这时两桶消毒液的质量相等,原来( )。
A.甲桶消毒液多 B.乙桶消毒液多
C.一样多 D.无法确定
6.某市推出购房利好政策,使用公积金贷款购买自住房的,贷款额度比之前最高64万元提高至80万元,最高贷款额度比之前提高了( )%。
A.25 B.80 C.125 D.20
二、填空题
7.=15∶( )=60%=( )折=( )(填小数)。
8.350米比( )米多40%;比15千克少是( )千克。
9.农历“夏至”是一年中白昼最长、黑夜最短的一天。这一天,赣榆的白昼和黑夜时间的比是7∶5。这一天,赣榆的黑夜是( )小时,白昼的时间比黑夜的时间长( )%。
10.洗衣机厂上半年生产洗衣机450万台,下半年增产二成,这个洗衣机厂全年生产洗衣机( )万台。
11.欣欣、安安、晨晨三位同学各拿了一瓶550毫升的矿泉水,欣欣喝了这瓶水的,安安喝了200毫升,晨晨喝了这瓶水的30%,这三人中,( )喝得最多,( )喝得最少。
12.一年一度的“3.8女神节”来临,某商场服装进行“折上折”促销活动,妈妈选中一件原价2000元的风衣,先打八五折,付款时又返还了现价20%的现金。妈妈买这件风衣实际只需付( )元,相当于原价的( )%。
13.根据如图中的信息填空。
涂色部分的面积占整个图形的;空白部分面积比涂色部分少( )%。
14.在一个长8厘米,宽4厘米的长方形纸中,画一个最大的半圆,这个半圆的面积是( )平方厘米,半圆的面积比长方形的面积少( )%。
三、解答题
15.4名小朋友去买书。
小芳买的书原价30元,实际降价10%;
小丽付的钱数是小芳所付钱数的50%;
小玲付的钱数是小芳所付钱数的;
小霞付的钱数是小芳所付钱数的1.5倍。
(1)小芳付了多少钱?
(2)你还能提出其他数学问题并解答吗?
16.实验小学举行六年级美术作品征集比赛。六(1)班提交了48件作品,比六(2)班提交的作品数少20%,六(2)班获奖作品数占本班提交作品总数的。六(2)班获奖作品有多少件?
17.爸爸四月份工资是6000元,五月份工资比四月份多了二成。个人所得税征收标准规定:每月收入超出5000元而不超过8000元的部分要缴纳3%的个人所得税。爸爸五月份的工资是多少元?他五月份需交个人所得税多少元?
18.一瓶洗衣液,第一周用了这瓶洗衣液的,第二周用了这瓶洗衣液的20%,还剩0.8升,这瓶洗衣液原有多少升?
19.仓库有180吨钢材,第一次用去总数的20%,第二次用去总数的。两次一共用去多少吨钢材?
20.有三堆同样枚数的棋子,取出第一堆50%和第二堆的,从第三堆取出15枚,这时三堆剩下的棋子枚数恰好等于原来两堆棋子的枚数。原来每堆棋子有多少枚?
参考答案:
1.D
【分析】当绳子长度为1米时,
第一根剩下的长度:1×(1-10%)=1×90%=(米);
第二根剩下的长度:1-=(米);
=,当绳子长度为1米时,两根绳子剩下的部分长度相等;
当绳子长度为10米时,
第一根剩下的长度:10×(1-10%)=10×90%=9(米);
第二根剩下的长度:10-=9(米);
9>9,当绳子长度为10米时,第二根绳子剩下的长;
当绳子长度为米时,
第一根剩下的长度:×(1-10%)=×90%=(米);
第二根剩下的长度:-=(米);
>,当绳子长度为米时,第一根绳子剩下的长。
当两个绳子的长度不同时,剩下的长度也就不同,据此解答即可。
【详解】两根同样长的铁丝,第一根剪去10%,第二根剪去米长,剩下的绳子无法确定哪根长;
故答案为:D
【点睛】解答本题时要分情况讨论,当绳子长短不同时剩下的长度也就不同。
2.B
【分析】成活率是指成活的棵数占总棵数的百分比,计算方法是:成活的棵数÷植树总棵数×100%=成活率,代入数据求解即可。
【详解】树苗总数为100+5,所以根据公式得出树苗成活率为。
故答案为:B
【点睛】此题属于百分率问题,都是用一部分数量(或全部数量)除以全部数量乘百分之百。
3.C
【分析】根据题意,设a×=b÷62.5%=c×=1(a、b、c均不为0),分别求出a、b、c的值,再进行比较,即可解答。
【详解】设a×=b÷62.5%=c×=1
a×=1
a=1÷
a=1×
a=
b÷62.5%=1
b=1×62.5%
b=0.625
c×=1
c=1÷
c=1×
c=
<0.625<,即c<b<a,c最小。
已知a×=b÷62.5%=c×=1(a、b、c均不为0),a、b、c这三个数中最小的是c。
故答案为:C
【点睛】解答此题,首先应找出解题的突破口,从最后结果1入手,求出各数,再进行比较。
4.C
【分析】白棋子数与黑棋子数的比是3∶2,可把白棋子数看作3份,黑棋子数看作2份,然后对各选项进行判断。求白子数是黑子数的几倍,则用白子数除以黑子数即可;要求黑子数与白子数的比是多少,用黑子的份数比白子的份数;求白子数比黑子数多几分之几,则用白子的份数减去黑子的份数再除以黑子份数即可;求黑子数占一盒棋子数的百分之几,就是用黑子的份数除以黑白棋子的总份数即可。
【详解】A. 3÷2=1.5
白子数是黑子数的1.5倍,原题说法正确;
B.黑子数和白子数的比是2∶3,原题说法正确;
C.(3-2)÷2
=1÷2
=
因此白子数比黑子数多,原题说法错误;
D.2÷(3+2)
=2÷5
=40%
因此黑子数占一盒棋子数的40%,原题说法正确。
故答案为:C
【点睛】解答此题的关键是把黑、白棋子的数量分别看作2和3进行解答。
5.B
【分析】甲桶用去,即用去20%,剩下80%,乙桶用去30%,剩下70%,此时两桶消毒液的质量相等,即甲×80%=乙×70%,根据比的基本性质,化简比即可比较。
【详解】由分析可知:
甲×(1-)=乙×(1-30%)
甲×(1-20%)=乙×(1-30%)
甲×80%=乙×70%
甲∶乙=70%∶80%
甲∶乙=∶
甲∶乙=70∶80
甲∶乙=7∶8
7<8,所以,乙桶消毒液多。
故答案为:B
【点睛】本题考查分数、百分数和比的实际应用,熟练掌握它们的性质和关系是解题的关键。
6.A
【分析】用推出购房利好政策后最高贷款额度减以前的最高贷款额度,再除以以前的最高贷款额度,即可得解。
【详解】(80-64)÷64
=16÷64
=25%
故答案为:A。
【点睛】本题主要考查了百分数的实际应用,求一个数比另一个数多或少百分之几,用除法计算。
7.27;25;六;0.6
【分析】根据百分数化小数,小数点向左移动两位,去掉百分号即可,即60%=0.6,百分之几十就是几折;根据百分数化分数的方法:百分之多少,分母是100的分数,分子是百分号前面的,再根据分数的基本性质约分,即60%==,根据分数的基本性质:分子和分母同时乘或除以同一个数(0除外)分数大小不变,即==,再根据分数和比的关系,分子相当于比的前项,分母相当于比的后项,即=15∶25,据此即可填空。
【详解】由分析可知:
=15∶25=60%=六折=0.6
【点睛】本题中主要考查比、分数、小数、百分数、折扣之间的关系,熟练掌握它们之间的关系并灵活运用。
8. 250 12
【分析】把第一个括号看作单位“1”,已知350米比单位“1”多40%,则350米是单位“1”的(1+40%),根据百分数除法的意义,用350÷(1+40%)即可求出结果;
把15千克看作单位“1”,求比15千克少是多少千克,就是求15千克的(1-)是多少,根据分数乘法的意义,用15×(1-)即可求出结果。
【详解】350÷(1+40%)
=350÷1.4
=250(米)
15×(1-)
=15×
=12(千克)
350米比250米多40%;比15千克少是12千克。
【点睛】本题主要考查了分数和百分数的应用,明确已知比一个数多(少)百分之几的数是多少,求这个数用除法计算以及求比一个数多(少)几分之几的数是多少,用乘法计算。
9. 10 40
【分析】一天24小时,将24小时除以(7+5),求出一份白昼或黑夜的时间,再将其乘5份,求出黑夜的时间;
将白昼的份数减去黑夜的,再除以黑夜的份数,求出白昼的时间比黑夜的时间长百分之几。
【详解】24÷(7+5)
=24÷12
=2(小时)
2×5=10(小时)
(7-5)÷5
=2÷5
=40%
所以,这一天,赣榆的黑夜是10小时,白昼的时间比黑夜的时间长40%。
【点睛】本题考查了按比分配问题、百分数的相关运算,能根据比求出一份白昼或黑夜的时间是解题关键。
10.990
【分析】下半年增产二成,是指下半年的产量是上半年的(1+20%),把上半年生产的台数看成单位“1”,用上半年生产的台数乘(1+20%)就是下半年生产的台数,再把上半年和下半年的产量相加即可求解。
【详解】二成=20%
450×(1+20%)+450
=450×1.2+450
=540+450
=990(万台)
所以,这个洗衣机厂全年生产洗衣机990万台。
【点睛】解决本题的关键是理解几成的含义,几成就是百分之几十。
11. 安安 晨晨
【分析】已知一个数,求这个数的几分之几(百分之几)是多少,用乘法计算,欣欣喝的毫升数=矿泉水的总毫升数×,晨晨喝的毫升数=矿泉水的总毫升数×30%,最后比较大小,即可求得。
【详解】欣欣:550×=(毫升)
安安:200毫升
晨晨:550×30%=165(毫升)
因为200毫升>毫升>165毫升,安安喝的毫升数>欣欣喝的毫升数>晨晨喝的毫升数,所以安安喝得最多,晨晨喝得最少。
【点睛】根据求一个数的几分之几(百分之几)是多少的计算方法求出欣欣和晨晨喝的毫升数是解答题目的关键。
12. 1360 68
【分析】打八五折相当于现价是原价85%,用2000乘85%求出现价是多少,再减去返还的现价20%的现金求出实际付款是多少钱,用实际付款的钱数除以2000即可求出相当于是原价的百分之几。
【详解】现价:2000×0.85=1700(元)
实际付款:
1700-1700×20%
=1700-1700×0.2
=1700-340
=1360(元)
1360÷2000×100%
=0.68×100%
=68%
实际付款1360元,相当于原价的68%。
【点睛】明确折扣的实际含义是解题的关键,打几折就相当于求一个数的百分之几十。
13.;40
【分析】涂色部分的面积=正方形面积-4个三角形的面积,涂色部分的面积÷正方形面积=涂色部分的面积占整个图形的几分之几;空白部分与涂色部分的面积差÷涂色部分的面积=空白部分面积比涂色部分少百分之几。
【详解】4×4=16
1×3÷2×4=6
16-6=10
10÷16==
(10-6)÷10
=4÷10
=0.4
=40%
涂色部分的面积占整个图形的;空白部分面积比涂色部分少40%。
【点睛】关键是掌握并灵活运用正方形和三角形面积公式,此类问题一般用表示单位“1”的量作除数。
14. 25.12 21.5
【分析】在一个长8厘米,宽4厘米的长方形纸中,画一个最大的半圆,半圆的半径=这个长方形的宽,半圆的面积=πr2÷2,长方形面积=长×宽,长方形和半圆的面积差÷长方形的面积=半圆的面积比长方形的面积少百分之几。
【详解】3.14×42÷2
=3.14×16÷2
=25.12(平方厘米)
8×4=32(平方厘米)
(32-25.12)÷32
=6.88÷32
=0.215
=21.5%
在一个长8厘米,宽4厘米的长方形纸中,画一个最大的半圆,这个半圆的面积是25.12平方厘米,半圆的面积比长方形的面积少21.5%。
【点睛】关键是掌握并灵活运用长方形和圆的面积公式,差÷较大数=少百分之几。
15.(1)27元;
(2)(答案不唯一)见详解。
【分析】(1)由题意可知:这本书的原价是单位“1”,实际的价钱比原价少10%。求比一个数少百分之几的数是多少的解题方法:单位“1”的量×(1-百分之几)。据此用30×(1-10%)可求出小芳付的钱数。
(2)求一个数的百(或几)分之几是多少,用乘法计算。求一个数的几倍是多少,用乘法计算。据此可分别求出小丽、小玲、小霞所付的钱数,所以不防提问:他们四人一共花了多少钱?将4个人所付的钱数加起来解答即可。(答案不唯一)
【详解】(1)30×(1-10%)
=30×90%
=27(元)
答:小芳付了27元。
(2)(答案不唯一)问题:他们四人一共花了多少钱?
27+27×50%+27×+27×1.5
=27+13.5+9+40.5
=90(元)
答:他们四人一共花了90元。
【点睛】确定单位“1”的量是解决分数问题的关键。单位“1”已知,用乘法解答。
16.36件
【分析】把六(2)班提交的作品数看作单位“1”,已知六(1)班比六(2)班提交的作品数少20%,则六(1)班提交的作品数是六(2)班的(1-20%),根据百分数除法的意义,用48÷(1-20%)即可求出六(2)班提交的作品数,再根据分数乘法的意义,用六(2)班提交的作品数×即可求出六(2)班获奖作品数。
【详解】48÷(1-20%)
=48÷80%
=60(件)
60×=36(件)
答:六(2)班获奖作品有36件。
【点睛】本题主要考查了百分数和分数的应用,明确已知比一个数多(少)百分之几的数是多少,求这个数用除法计算以及求一个数的几分之几是多少,用乘法计算。
17.7200元;66元
【分析】几成表示百分之几十,则二成表示20%,五月份工资比四月份多了二成,表示把四月份的工资看作单位“1”,五月份工资是四月份的(1+20%),根据百分数乘法的意义,用6000×(1+20%)即可求出五月份工资,根据应纳税部分×税率=应纳税额,用五月份工资超过5000元的部分×3%即可求出应缴纳的个人所得税。
【详解】二成=20%
工资收入:6000×(1+20%)
=6000×1.2
=7200(元)
个人所得税:(7200-5000)×3%
=2200×3%
=66(元)
答:爸爸五月份的工资是7200元;他五月份需交个人所得税66元。
【点睛】此题考查了成数问题以及税率问题,要熟练掌握成数和税率的含义。
18.2升
【分析】把这瓶洗液的总容量看作单位“1”,第一周用了这瓶洗衣液的,第二周用了这瓶洗衣液的20%,则还剩下(1--20%),已知还剩0.8升,对应着分率(1--20%),根据量÷对应的分率=单位“1”的量,据此求出这瓶洗衣液原有多少升。
【详解】0.8÷(1--20%)
=0.8÷(1-0.4-0.2)
=0.8÷0.4
=2(升)
答:这瓶洗衣液原有2升。
【点睛】本题考查了分数、百分数复合应用题,关键是确定单位“1”,找到部分对应分率。
19.156吨
【分析】已知仓库有180吨钢材,两次分别用去了总数的20%和,则两次一共用去的分率为:20%+;要求得两次一共用去多少吨钢材,可把这批钢材总吨数看作单位“1”,根据百分数乘法、分数乘法的意义,求一个数的百分之几或几分之几是多少,用乘法计算;列式为:180×(20%+)。
【详解】180×(20%+)
=180×(+)
=180×
=156(吨)
答:两次一共用去156吨钢材。
【点睛】考查了百分数乘法的意义,分数乘法的意义,需要先确定好数量关系,再列式计算。
20.80枚
【分析】根据题意可知,三堆棋子的枚数相同,第一堆取出50%,第二堆的,第三堆取出15枚,这时三堆剩下的棋子枚数恰好等于原来两堆棋子的枚数,由此可知,每堆取出的棋子枚数的和等于一堆棋子的枚数,把一堆棋子的枚数看作单位“1”,用1减去第一堆取出的50%,减去第二堆取出的,求出第三堆取出棋子占第三堆棋子的分率,对应的是15枚棋子,用15除以第三堆取出棋子占第三堆棋子的分率,即可求出一堆棋子的枚数,据此解答。
【详解】15÷(1-50%-)
=15÷(50%-)
=15÷(-)
=15÷(-)
=15÷
=15×
=80(枚)
答:原来每堆棋子有80枚。
【点睛】解答本题的关门明确三堆棋子枚数相同,每堆取出的棋子的枚数和等于一堆棋子的枚数,进而解答。
精品试卷·第 2 页 (共 2 页)
()